Online Learning with Regularized Kernel for One-class Classification

نویسندگان

  • Chandan Gautam
  • Aruna Tiwari
  • Sundaram Suresh
  • Kapil Ahuja
چکیده

This paper presents an online learning with regularized kernel based one-class extreme learning machine (ELM) classifier and is referred as “online RK-OC-ELM”. The baseline kernel hyperplane model considers whole data in a single chunk with regularized ELM approach for offline learning in case of one-class classification (OCC). Further, the basic hyper plane model is adapted in an online fashion from stream of training samples in this paper. Two frameworks viz., boundary and reconstruction are presented to detect the target class in online RKOC-ELM. Boundary framework based one-class classifier consists of single node output architecture and classifier endeavors to approximate all data to any real number. However, one-class classifier based on reconstruction framework is an autoencoder architecture, where output nodes are identical to input nodes and classifier endeavor to reconstruct input layer at the output layer. Both these frameworks employ regularized kernel ELM based online learning and consistency based model selection has been employed to select learning algorithm parameters. The performance of online RK-OC-ELM has been evaluated on standard benchmark datasets as well as on artificial datasets and the results are compared with existing state-of-the art oneclass classifiers. The results indicate that the online learning oneclass classifier is slightly better or same as batch learning based approaches. As, base classifier used for the proposed classifiers are based on the ELM, hence, proposed classifiers would also inherit the benefit of the base classifier i.e. it will perform faster computation compared to traditional autoencoder based one-class classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online learning of positive and negative prototypes with explanations based on kernel expansion

The issue of classification is still a topic of discussion in many current articles. Most of the models presented in the articles suffer from a lack of explanation for a reason comprehensible to humans. One way to create explainability is to separate the weights of the network into positive and negative parts based on the prototype. The positive part represents the weights of the correct class ...

متن کامل

Manifold regularized kernel logistic regression for web image annotation

With the rapid advance of Internet technology and smart devices, users often need to manage large amounts of multimedia information using smart devices, such as personal image and video accessing and browsing. These requirements heavily rely on the success of image (video) annotation, and thus large scale image annotation through innovative machine learning methods has attracted intensive atten...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Indoor Localization via Discriminatively Regularized Least Square Classification

In this paper, we address the received signal strength (RSS)-based indoor localization problem in a wireless local area network (WLAN) environment and formulate it as a multi-class classification problem using survey locations as classes. We present a discriminatively regularized least square classifier (DRLSC)-based localization algorithm that is aimed at making use of the class label informat...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.04508  شماره 

صفحات  -

تاریخ انتشار 2017